The Portland Group
Oakridge Top Right

Since 1986 - Covering the Fastest Computers
in the World and the People Who Run Them

Language Flags

Visit additional Tabor Communication Publications

Enterprise Tech
HPCwire Japan

Simulations Shed Light on Star Formation

Astrophysics researchers at UC San Diego have advanced their understanding of star formation with the help of some major computational resources from San Diego Supercomputer Center (SDSC) at the UC San Diego and the National Institute for Computational Science (NICS) at Oak Ridge National Laboratory.

The three researchers describe the results of their study that yielded the results in a newly published paper, called "A Supersonic Turbulence Origin of Larson's Laws." The trio report on the origin of three observed correlations between various properties of molecular clouds in the Milky Way galaxy known as Larson's Laws.

Larson's Laws were named by professors teaching the three principles based on a seminal 1981 paper by Richard Larson, an Emeritus Professor of Astronomy at Yale. That paper describes the observation-based relationships of the structure and supersonic internal motions of molecular clouds where stars form.

Their analysis was based on data from a suite of six ISM (interstellar medium) simulations, which include the effects of self-gravity, turbulence, magnetic fields and multiphase thermodynamics. Both the simulations and analysis were performed on the DataStar supercomputer (now-decommissioned), and the Trestles and Triton systems at the San Diego Supercomputer Center, as well as on the Kraken and Nautilus systems at the National Institute for Computational Science.

A writeup on this study penned by Jan Zverina at UCSD, notes that the "supercomputer simulations support a turbulent interpretation of Larson's relations."

"The study concludes that there are not three independent Larson laws, but that all three correlations are due to the same underlying physics, i.e. the properties of supersonic turbulence," reports Zverina.

Larson gave the following statement in response to the new research: "After decades of inconclusive debate about the interpretation of the correlations among molecular cloud properties that I published in 1981, it’s gratifying to see that my original idea that they reflect a hierarchy of supersonic turbulent motions is well supported by these detailed new simulations showing that the debated complicating effects of gravity, magnetic fields, and multiphase structure do not fundamentally alter the basic picture of a turbulent cascade."

The research team includes lead author Alexei Kritsuk, a research physicist with UC San Diego's Physics Department and Center for Astrophysics & Space Sciences (CASS), Michael Norman, Director of the San Diego Supercomputer Center and a Distinguished Professor of physics at UC San Diego, and Christoph T. Lee, an undergraduate researcher with CASS.

Larson's original paper and this follow-up work both appear in the same prominent astronomy and astrophysics journal: Great Britain's Monthly Notices of the Royal Astronomical Society.

Most Read Features

Most Read Around the Web

Most Read This Just In

Most Read Blogs

Sponsored Whitepapers

Breaking I/O Bottlenecks

10/30/2013 | Cray, DDN, Mellanox, NetApp, ScaleMP, Supermicro, Xyratex | Creating data is easy… the challenge is getting it to the right place to make use of it. This paper discusses fresh solutions that can directly increase I/O efficiency, and the applications of these solutions to current, and new technology infrastructures.

A New Ultra-Dense Hyper-Scale x86 Server Design

10/01/2013 | IBM | A new trend is developing in the HPC space that is also affecting enterprise computing productivity with the arrival of “ultra-dense” hyper-scale servers.

Sponsored Multimedia

Xyratex, presents ClusterStor at the Vendor Showdown at ISC13

Ken Claffey, SVP and General Manager at Xyratex, presents ClusterStor at the Vendor Showdown at ISC13 in Leipzig, Germany.

HPCwire Live! Atlanta's Big Data Kick Off Week Meets HPC

Join HPCwire Editor Nicole Hemsoth and Dr. David Bader from Georgia Tech as they take center stage on opening night at Atlanta's first Big Data Kick Off Week, filmed in front of a live audience. Nicole and David look at the evolution of HPC, today's big data challenges, discuss real world solutions, and reveal their predictions. Exactly what does the future holds for HPC?


HPC Job Bank

Featured Events

HPCwire Events