Opinion: The Free HPC Fairytale

By Michael Feldman

October 4, 2012

I was more than a little perplexed at a recent article I ran across on Tech Radar that suggested high performance will be free, or nearly so, by 2020. You know, like how nuclear power was going to be “too cheap to meter” once the technology became ubiquitous.

The Tech Radar article, penned by self-described tech addict Jeremy Laird, was an interpretation of some presentations at the recent Intel Developer Forum (IDF) in San Francisco. The premise of his piece is based on Intel’s plans to keep Moore’s Law on track for at least another 10 years, which will put 5nm microprocessors into circulation around the end of the decade. If so, the silicon logic that exists on today’s chips will be able to be crammed into just six percent of the space on 2020-era microprocessors.

The almost-free-HPC leap of faith occurs if you now believe that transistor shrinkage corresponds to system price. Even for the chips alone, that’s not the case, since the fabs become much more expensive at smaller manufacturing nodes, circuit design testing becomes more difficult, and labor costs tend to rise. So those extra expenses have to be factored in. It is certainly true that peak FLOPS and OPS do become cheaper as you shrink the transistors, just not in a Moore’s Law kind of way.

To deliver HPC into the land of the free you also would need to ignore the other components that go into a machine, such as memory, power supplies, interconnects, external storage, and so on. And unfortunately, not all of these technologies are on a Moore’s Law trajectory. Laird does admit that the processor is just one element of the machine, but brushes it off. (And, by the way, most of his discussion seems to focus on personal computing devices, not HPC machinery, but the general argument is the same.)

His real concern, though, is how Intel or any chipmaker is going to make money if chips are nearly free. The answer: “sheer volume.” Since chips will be so cheap, he writes, “they’ll be sticking compute into almost everything.” In that sense, he’s probably on target. Processors destined for embedded computing are already relatively inexpensive and as they become cheaper, they’ll find their way into even more applications.

But even these chips won’t be free, and the systems they end up in certainly won’t be either. In 2020, your $500 smartphone isn’t going to be $30; it’s more likely to be $100. (But it will be equipped with a phaser, so there’s that.)

For HPC, the chip economics are actually quite different than that of the consumer space. The microprocessors that inhabit supercomputers tend to be more-expensive chips – lower volume, higher margin – and you need lots of them to make up a single system. In any case, compared to the other hardware components that go into the machine, the processor will still represent a significant chunk of the total cost.

But even if high-volume embedded processors infiltrated HPC, that wouldn’t lead to free computing either. Just consider the DRAM market, whose suppliers have been selling their high-volume silicon wares at a loss because of oversupply. Despite that, in many cases, the expense of DRAM limits how much memory can be stuffed into HPC systems.

On the other side are those who complain about the high costs of HPC, especially as it relates to future exascale systems. If trend lines hold, a top-tier 2020 supercomputer will cost between $300 and $400 million. That’s three to four times the price of Roadrunner, the first petaflop supercomputer, which went into production in 2008. Running that 2020 exaflop system will probably require at least 20 MW of power, costing an additional $20 million per year in the US, and even more in most of Europe.

So much for free. In fact, it’s not unreasonable to question whether such systems would even be affordable for individual national labs. And if that’s the case, there’s less incentive for vendors to even design and build these machines. The top of the TOP500 is already a dicey business, and if that space shrinks too much, system makers will exit the market.

I’m guessing the future of HPC lies somewhere between those two extremes. There’s every reason to believe that in 2020 there will be plenty of demand for high performance computing systems – from supercomputers to small clusters. If so, chipmakers and system vendors will find a way to pay for manufacturing and labor costs, while adding in a profit margin that makes sense for their business. So here’s my bold predication: In 2020, HPC will be priced somewhere between unaffordable and free.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire