The Portland Group
CSCS Top Right Frontpage
HPCwire

Since 1986 - Covering the Fastest Computers
in the World and the People Who Run Them

Language Flags

Visit additional Tabor Communication Publications

Enterprise Tech
Datanami
HPCwire Japan

Ties That Bind: Organizing Large-Scale HPC in the European Union


The combined economic resources of the 27 member states of the European Union make it the largest economy in the world. No stranger to the world of HPC, and convinced of the power of technology to further propel the prosperity and well-being of its citizens, the EU is investing heavily in pan-European resources that it hopes will propel its members to the forefront of the computational stage.

Viviane Reding, the European commissioner for Information Society and Media, believes in the power of technology to transform lifestyles and drive the prosperity of the European Union. Her portfolio stretches from telecommunications to eHealth services. And she believes in HPC.

A recent Computerworld article captured her remarks at the opening of the Ter@tec 2008 HPC conference in France, "Supercomputers are the 'cathedrals' of modern science, essential tools to push forward the frontiers of research at the service of Europe's prosperity and growth." But, as many of us know firsthand, building a large-scale supercomputing infrastructure to support research and industrial goals is complicated and can take enormous financial resources.

The computers themselves, often costing upwards of $100M for leadership resources, are just the down payment. Indeed, modern HPC center planners now count on the lifecycle costs of supercomputers to outstrip their acquisition costs.

Users must be able to connect to supercomputing centers over high bandwidth, low latency, very wide area networks, and they must be supported through routine questions and complicated software issues. The systems require continuous care and feeding by trained administrators. Multi-thousand ton chillers must be bought and installed, and building power infrastructures must be expanded to support the multi-megawatt needs of modern supercomputers.

As the two largest economies in the world, the United States and Japan have been in a position to devote the resources needed to develop and sustain world-leading supercomputing infrastructures. While each of the countries of Europe have made, to varying degrees, national investments in HPC, those economies individually simply didn't have the resources to compete with the US and Japan. The collective resources of the European Union, however, may dramatically alter that dynamic.

Collectively the 27 member states of the European Union represent the world's largest economy. Through its various science and industrial research programs, the EU, along with individual members acting in concert, has committed to creating a supranational supercomputing infrastructure on a par with anything the US and Japan have created to date.

One of the key focal points for HPC in the EU is DEISA, the Distributed European Infrastructure for Supercomputing Applications. DEISA is a consortium of national supercomputing centers in Europe, brought together with a common infrastructure to advance broader European computational science research goals. I spoke with Stefan Heinzel, the project coordinator for DEISA, and Hermann Lederer, who leads external relations, by email about the effort.

I asked them to describe how DEISA fits into the science ecosystem in Europe. "An agency like the US National Science Foundation is a national science policy and funding agency, as are research units of the European Commission (EC) at European level, and respective national organisations," says Lederer. "The EC is co-funding the DEISA2 project along with various national partners, as the NSF is funding the TeraGrid project. DEISA is an HPC infrastructure project and can be regarded as a European counterpart of TeraGrid."

There are 11 principal partner centers from seven European countries participating in DEISA, including the Rechenzentrum Garching of the Max Planck Society (RZG), the Barcelona Supercomputing Center (BSC), the Jülich Supercomputing Centre (JSC), the Edinburgh Parallel Computing Centre (EPCC), and others. The partnership has been operational for some time, having just received a new round of funding from the Seventh Framework Programme Research and Technological Development, the EU's research funding arm.

As explained by Lederer, the DEISA infrastructure is layered on top of existing national supercomputing centers, each with its own skills, funding, and computational goals. Each of these national resources sets aside a portion of its resources for computational projects at the European level. No hardware funding is awarded through DEISA; all upgrades to HPC systems are funded by individual member states and institutions. Starting with only 30 teraflops in 2004, DEISA sites have grown to roughly 1 petaflops of aggregate performance in 2008.

DEISA partners are connected to users, and to one another, via GEANT2 and the National Research and Education Networks. This infrastructure connects DEISA sites at 10 Gbps, with dedicated wavelengths on the NRENs and GEANT2.

DEISA encourages researchers to stretch the boundaries of their understanding on important research issues through the DEISA Extreme Computing Initiative (DECI). DECI projects are awarded large blocks of time on DEISA HPC resources to tackle especially challenging, large-scale computational problems. In DEISA1, DECI awards were made on individual projects. Beginning this year with DEISA2, the EU is shifting focus to projects that will support Virtual Science Communities across Europe, strengthening the overall R&D environment and encouraging broader collaboration. DEISA is also shifting the technologies and expertise it invests in to provide tools that will integrate broader teams, including resource integration via grid technologies, and Web tools and portals. Interestingly DEISA provides data management services and an infrastructure for the European research community that includes a common multi-cluster filesystem, accessible from nearly any DEISA HPC platform, based on IBM's Multicluster GPFS.

While the 1 petaflops of aggregate computational power deployed by DEISA partners is certainly significant, the EU and European HPC leaders have recognized a need to further increase their investment to support goals of advancing the prosperity of Europe through global computational leadership. Enter PRACE, the Partnership for Advanced Computing in Europe.

The goal of PRACE is to establish three to five European "tier 0" centers, each with petascale resources, that will serve broader EU science and industrial research goals. PRACE is still very much a planning exercise, currently funded at 40M euros of what is expected to grow to an estimated 200M euro budget for operations alone. PRACE envisions a three-year lifecycle for its large machines, and doesn't intend to operate them in isolation. According to Lederer, "PRACE and DEISA activities are expected to merge for the operation of tier 1 and future tier 0 centers in an integrated European HPC ecosystem. Most PRACE members are already DEISA partners."

In contrast to DEISA, which is a bottom-up approach organizing existing centers, PRACE is a top-down exercise. Why the shift? I talked with Achim Bachem, coordinator of the PRACE project, by email. "Combining national resources in a bottom-up way merges capacities, but does not provide larger capabilities. Procuring systems of the highest performance level requires the combined financial efforts of more than one country," says Bachem. "The second reason is that we want to create a homogeneous pan-European HPC service with common access policies and a single peer review system. This will be an important contribution to the European Research Area and also requires a top-down approach."

PRACE just started operations in January of this year, and they have a lot of work ahead of them. Their first challenge is to determine what legal entity is best to conduct PRACE business, and how it will be organized. According to Dr. Bachem, this won't be easy, "This is an essential and complex task, since national as well as European interests have to be combined into a single transparent and efficient framework."

While things get organized, progress is being made on the technical front with a survey of architectures and candidate petaflops systems for 2010. "Based on the suitability of the various architectures for important applications, we have defined a set of prototype systems that will cover all relevant architectures, ranging from well proven ones like MPPs to upcoming hybrid systems," says Bachem. "Since this joint proposal has an overall budget of several million euros, it will be evaluated and approved by the European Commission in July, before we start the acquisition."

Will the focus be on production-quality systems or novel architectures? According to Dr. Bachem, both: "...one of the advantages of this joint European venture is that we will be able to operate more than one leadership system at any given point in time. This gives us the freedom to also invest in more advanced technologies."

PRACE isn't only focused on hardware. Its largest work package (in person-months) is devoted to software for petascale systems. "In the past," says Bachem, "software has been a European strength, but currently there is nothing comparable to the SciDAC initiative in the US. Europe has to be more active in this area in the future."

This effort is clearly a major potential benefit for the European (and global) scientific and research community, but there is significant time pressure to deliver results quickly. Implementation is not scheduled to begin until late 2009 or 2010, with much of the next two years focused on organization and planning. With the release of the latest TOP500 list officially marking the passage of the petaflops hurdle this week, petascale systems, while certainly not routine by 2010-2011, won't be major scientific accomplishments either. In order to ensure the relevance of this substantial program, the EU knows it has to act as quickly as it can.

Most Read Features

Most Read Around the Web

Most Read This Just In

Most Read Blogs


Sponsored Whitepapers

Breaking I/O Bottlenecks

10/30/2013 | Cray, DDN, Mellanox, NetApp, ScaleMP, Supermicro, Xyratex | Creating data is easy… the challenge is getting it to the right place to make use of it. This paper discusses fresh solutions that can directly increase I/O efficiency, and the applications of these solutions to current, and new technology infrastructures.

A New Ultra-Dense Hyper-Scale x86 Server Design

10/01/2013 | IBM | A new trend is developing in the HPC space that is also affecting enterprise computing productivity with the arrival of “ultra-dense” hyper-scale servers.

Sponsored Multimedia

Xyratex, presents ClusterStor at the Vendor Showdown at ISC13

Ken Claffey, SVP and General Manager at Xyratex, presents ClusterStor at the Vendor Showdown at ISC13 in Leipzig, Germany.

HPCwire Live! Atlanta's Big Data Kick Off Week Meets HPC

Join HPCwire Editor Nicole Hemsoth and Dr. David Bader from Georgia Tech as they take center stage on opening night at Atlanta's first Big Data Kick Off Week, filmed in front of a live audience. Nicole and David look at the evolution of HPC, today's big data challenges, discuss real world solutions, and reveal their predictions. Exactly what does the future holds for HPC?

Xyratex

HPC Job Bank


Featured Events


HPCwire Events