A Grand Challenge DNS at BSC

By Nicole Hemsoth

August 4, 2006

by Sergio Hoyas and Javier Jiménez Sendín
School of Aeronautics, Universidad Politécnica

The main goal of this grand challenge application is to better understand the physics of turbulent boundary layers at high Reynolds numbers. This simulation was performed on the Barcelona Supercomputing Center's supercomputer MareNostrum and is now the world's largest simulation in the field of wall turbulence, with 2e10 grid points.

It is important to note the multi-scale character of the intermediate layer present in turbulent flows. This is where the longest flow structures are found and where the range of scales is widest. The purpose of this experiment is to extend available simulations to a Reynolds number twice as high as had been previously studied. Wall-bounded turbulence has been studied for a long time, but it is only recently — in fact, only with this experiment — that we are able to represent the logarithmic layer linking the near-wall and outer flow regions. This is the location of the self-similar energy and momentum cascades, which are the essence of turbulent flows.

Based on previous simulations and experiments done by other researchers, we have some understanding of the nonlinear dynamics of the near-wall structures and the largest outer scales. Both are essentially single-scale phenomena. However, the dynamics of the intermediate range of scales are more poorly understood because it has been impossible up to now to simulate a Reynolds number large enough for a multi-scale range to be available.

The problem is not just of scientific interest. Wall-bounded turbulence is the interface between the ambient fluid, water or air, and moving vehicles, and between flows and pipes and channels. It is also a key component of the atmospheric boundary layer. The large scales, for example, play an important role in the dispersion of chemical agents in the atmosphere. Due to their associated low frequencies, their pressure fluctuations are responsible for undesirable aerodynamic loads which may result in structural fatigue and long-range noise in vehicles. More than half of the friction drag in vehicles resides in the near-wall and intermediate layers. The hopes of controlling and alleviating these phenomena reside with the understanding of their dynamics.

The Smallest Scale

The program we have developed performs a turbulence simulation using the Navier-Stokes equations for an incompressible fluid in a plane channel between two infinite parallel plates. No modeling is used. The computation is carried out in a doubly periodic domain in two wall-parallel directions, which must be large enough to minimize artifacts due to spurious periodicity. From our experience with lower Reynolds numbers we have chosen a domain of size 25h in the streamwise direction (x) and 10h in the spanwise direction (z) where h is the channel half-thicknesses. This procedure, although both memory- and compute-intensive, allows us to compute any property of the flow with greater accuracy than would be obtainable using experimental measurements in laboratory flows. In particular, it allows us to access variables, such as time- and space-resolved velocity gradients and vorticity, which cannot be measured in the laboratory. The Reynolds number used in the simulation is comparable to those used in many laboratory flows and higher than those used in most of the wall-bounded turbulent flows that have been measured in any detail beyond mean and fluctuating velocities.

The program code is based on previous versions developed by our group during the past fifteen years and broadly follows the standard spectral code developed at the end of the 1980s by groups at Göttingen and at NASA Ames. The version used in our previous simulations has been widely distributed and is now used at the University of TX at Austin and Nagoya University in Japan, for example. For the present simulation, a newer version that removes several limitations of the older code has been developed, saving up to fifty percent of the memory requirements and improving code flexibility. For example, the older version could only be run efficiently in a number of nodes that was a divisor both of the number of computational planes in the wall-normal (y) direction, and of those in the streamwise (x) direction. The former is usually an order of magnitude smaller than the latter, and limited the use of that code to relatively small machines. That limitation has been removed from the present version. The new code also uses a higher-order Runge-Kutta time-stepper, allowing a longer time step, and a 'spectral' sixth-order Compact Finite Differences (CFD) discretization in the y-direction, which allows greater flexibility in the choice of the grid. Those two changes save about a factor of two in computer time.

The code uses Fourier discretization in x-z directions and CFD in the y direction, with mx*my*mz points (6144 * 633 * 4608 in this case). For each sub-step of R-K scheme, the data set is distributed in y-z planes. To avoid load imbalances, the number of processors must be divisible by the number of complex planes, (mgalx/3 after dealising, 2048 in the present case). While in this memory organization, the data is transformed from Fourier space in z to physical space in z. This is needed to compute the nonlinear terms of the Navier-Stokes equations.

After this, the data set is moved from y-z planes to x-lines using MPI routines. Then the data is transformed to physical space in x, and the nonlinear terms are computed using the 3/2 technique to avoid aliasing. The nonlinear term is then transformed back to x-Fourier, moved to y-z planes and transformed to z-Fourier. We then solve the viscous problem and move to the next sub step of the R-K. The two global (all to all) transposes needed in this step constitute most of the communication cost of the code.

In order to run this code in a supercomputer with more than 2048 processes with optimal performance, we did some specific optimization, such as tuning the code to take advantage of the vectorial instruction set of the PPC970-FX  CPU. This was achieved using a version of the FFTW library provided by the Barcelona Supercomputing Center's Deep Computing research group. In addition, the most expensive I/O operations were assigned to dedicated processors to reduce the global file system contention. The latter approach allowed us to overlap the computing stage of 2048 processors with the massive writing operations, using only 60 extra processors. The aim was that the code was able to follow the normal execution while the dedicated processors saved to disk the huge amount of information produced by the code, up to 25 TB for the entire simulation.

The MareNostrum facility became the optimal platform to run this grand Challenge simulation because of the project's computational needs, together with the large amount of memory required per process and the huge amount of data interchanged, roughly 122 EB. It was a challenge for the support team of MareNostrum because of the simulation's size. MareNostrum is a facility available to the global scientific community.

In summary, using close to five million CPU-hours (more than 570 years in a single computer), we performed a landmark simulation in wall turbulence. While the full analysis of the results from this simulation will take several years, some results are already open to the community via the website http://torroja.dmt.upm.es.

—–

For more information, visit the Barcelona Supercomputing Center website at www.bsc.es.

You can contact Sergio Hoyas at [email protected] and Javier Jiménez Sendín at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire